On super-Jordanian ${ }^{\mathcal{U}_{\mathrm{h}}(s l(N \mid 1))}$ algebra

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2006 J. Phys. A: Math. Gen. 398307
(http://iopscience.iop.org/0305-4470/39/26/004)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.105
The article was downloaded on 03/06/2010 at 04:39

Please note that terms and conditions apply.

On super-Jordanian $\mathcal{U}_{\mathrm{h}}(\operatorname{sl}(N \mid 1))$ algebra*

B Abdesselam ${ }^{1,2}$, A Chakrabarti ${ }^{3}$, R Chakrabarti 4, A Yanallah ${ }^{1}$ and M B Zahaf ${ }^{1}$
${ }^{1}$ Laboratoire de Physique Quantique de la Matière et Modélisations Mathématiques (LPQ3M), Centre Universitaire de Mascara, 29000-Mascara, Algeria
${ }^{2}$ Laboratoire de Physique Théorique d’Oran, Université d'Oran Es-Sénia, 31100-Oran, Algeria
${ }^{3}$ Centre de Physique Théorique, Ecole Polytechnique, 91128-Palaiseau cedex, France
${ }^{4}$ Department of Theoretical Physics, University of Madras, Guindy Campus, Madras 600025 , India

Received 31 October 2005, in final form 9 May 2006
Published 14 June 2006
Online at stacks.iop.org/JPhysA/39/8307

Abstract

A nonlinear realization of the nonstandard (super-Jordanian) version of $\mathcal{U}(\operatorname{sl}(N \mid 1))$ is given, for all N.

PACS numbers: 02.10.Yn, 02.20.Uw, 03.65.Fd

1. Introduction

Jordanian and super-Jordanian quantum algebras have been recently used for several applications in physical problems. For instance, super-Jordanian $\mathcal{U}_{\mathrm{h}}(\operatorname{osp}(1 \mid 2))$ algebra has been understood as the κ-deformation of the symmetry algebra of the super-conformal mechanics [1]. In another context, integrable deformed Hamiltonian systems have been introduced [2] via Poisson co-algebra associated with quantized Jordanian $\mathcal{U}_{\mathrm{h}}(s l(2))$ algebra. We believe that fully developed Hopf co-algebraic structure in a deformed basis for the $\mathcal{U}_{\mathrm{n}}(s l(N \mid 1))$ presented here will be useful in building and studying similar deformed fermionic integrable models. Furthermore, using the co-representation structure of the function algebra dually related to the universal enveloping algebra, a general method of constructing noncommutative (super)spaces has been recently developed [3] in the context of the quantum supergroup $O S p_{q}(1 \mid 2)$. Application of this method to the case of the dual quantum supergroup $S L_{\mathrm{h}}(N \mid 1)$ will lead to new quantum superspaces inherently containing a dimensional deformation parameter. Influenced by these observations here we introduce super-Jordanian $\mathcal{U}_{\mathrm{h}}(s l(N \mid 1))$ algebra in the deformed basis set.

In a series of papers [4-7], we have proposed a new scheme which permits the construction of the nonstandard version $\mathcal{U}_{\mathrm{h}}(\mathrm{g})$ of an enveloping (super)algebra $\mathcal{U}(\mathrm{g})$ by a suitable contraction, from the corresponding standard ones $\mathcal{U}_{q}(\mathrm{~g})$. Our method hinges on

[^0]obtaining the \mathcal{R}_{h}-matrix, for all dimensions, of a (super)Jordanian quantum (super)algebra $\mathcal{U}_{\mathrm{h}}(\mathrm{g})$ from the \mathcal{R}_{q}-matrix associated with the standard quantum (super)algebra $\mathcal{U}_{q}(\mathrm{~g})$ through a specific transformation G (singular in the $q \rightarrow 1$ limit), as follows:
\[

$$
\begin{equation*}
\mathcal{R}_{\mathrm{h}}=\lim _{q \rightarrow 1}\left[\mathrm{G}^{-1} \otimes \mathrm{G}^{-1}\right] \mathcal{R}_{q}[\mathrm{G} \otimes \mathrm{G}] \tag{1.1}
\end{equation*}
$$

\]

where, for example, $\mathrm{G}=\mathrm{E}_{q}\left(\frac{h \hat{e}_{1 N}}{q-1}\right)$ for $\mathcal{U}_{q}(\operatorname{sl}(N))\left(\hat{e}_{1 N}\right.$ is the longest positive root generator of $\mathcal{U}_{q}(s l(N))$) and $\mathrm{G}=\mathrm{E}_{q^{2}}\left(\frac{h \hat{e}^{2}}{q^{2}-1}\right)$ for $\mathcal{U}_{q}(\operatorname{osp}(2 \mid 1))(\hat{e}$ is the fermionic positive simple root generator of $\left.\mathcal{U}_{q}(\operatorname{csp}(1 \mid 2))\right)$. The deformed exponential map E_{q} is defined by

$$
\begin{array}{ll}
\mathrm{E}_{q}(\eta)=\sum_{n=0}^{\infty} \frac{(\eta)^{n}}{[n]_{q}!}, & {[n]_{q}=\frac{q^{n}-q^{-n}}{q-q^{-1}}} \tag{1.2}\\
{[n]_{q}!=[n]_{q} \times[n-1]_{q}!,} & {[0]_{q}!=1}
\end{array}
$$

For the transformed matrix, the singularities, however, cancel yielding a well-defined construction. This procedure yields a nonstandard deformation along with a nonlinear map of the h-Borel subalgebra on the corresponding classical Borel subalgebra, which can be artfully extended to the whole (super)algebra. The Jordanian quantum algebra $\mathcal{U}_{\mathrm{h}}(s l(N))$ arising from the process cited above corresponds to the classical matrix $r=h_{1 N} \wedge e_{1 N}$. Therefore, the universal \mathcal{R}_{h}-matrix of the full $\mathcal{U}_{\mathrm{h}}(s l(N))$ Hopf algebra, obtained, coincides with the universal \mathcal{R}_{h}-matrix of the $\mathcal{U}_{\mathrm{h}}(s l(2))$ Hopf subalgebra [19] associated with the highest roots. In the case of $\mathcal{U}(\operatorname{osp}(1 \mid 2)),{ }^{5}$ the super-Jordanian quantum super-algebra $\mathcal{U}_{\mathrm{h}}(\operatorname{osp}(2 \mid 1))$ occurred from our treatment is associated with the classical matrix $r=h \wedge e^{2}-e \wedge e$. The advantages of our technique are: (1) with an appropriate choice of basis, the Jordanian quantum Hopf (super)algebra, obtained by our process, can be endowed with a relatively simpler coalgebraic structure, and (2) our nonlinear map permits immediate explicit construction of the finite-dimensional irreducible representations.

Let us mention that in general, nonstandard quantum algebras are obtained by applying Drinfeld twist [8] to the corresponding Lie algebras (see [9-15] and references therein). The twist deformation of super-algebras was also discussed in the literature: [1, 16] $(\mathcal{U}(\operatorname{osp}(1 \mid 2))$ case), [17] ($\mathcal{U}(\operatorname{osp}(1 \mid 4))$ case) and [18] (general super-algebra case). We will not consider this way here.

The main object of this paper is to present how our contraction procedure works for $\mathcal{U}(\operatorname{sl}(N \mid 1))$ super-algebra for obtaining the nonstandard version $\mathcal{U}_{\mathrm{h}}(s l(N \mid 1))$. For simplicity, we will limit here ourselves to $\mathcal{U}(s l(2 \mid 1))$ and $\mathcal{U}(s l(3 \mid 1))$. The construction of higher dimensional super-algebras $\mathcal{U}_{\mathrm{h}}(s l(N \mid 1))$ is presented, briefly, at the end of this paper. The manuscript is organized as follows: the super-Jordanian quantum super-algebra $\mathcal{U}_{\mathrm{h}}(s l(2 \mid 1))$ is introduced via a nonlinear map and proved to be a Hopf algebra. Higher dimensional super-algebras $\mathcal{U}_{\mathrm{h}}(s l(N \mid 1)), N \geqslant 3$, are presented in sections 3 and 4 . We conclude in section 5.

2. $\mathcal{U}_{\mathrm{h}}(\operatorname{sl}(2 \mid 1))$: contraction, nonlinear map and Hopf structure

Let us recall the more important points concerning $\operatorname{sl}(2 \mid 1)$: Let $A=\left(a_{i j}\right)$ be the 2×2 matrix given by $a_{11}=2, a_{12}=a_{21}=-1$ and $a_{22}=0$. The Lie-Hopf super-algebra $\mathcal{U}(s l(2 \mid 1))$ is generated by the generators h_{i}, e_{i} and $f_{i}, i=1,2$, where h_{1}, h_{2}, e_{1} and

5 The recent work shows that there exist three distinct bialgebra structure on $\operatorname{osp}(1 \mid 2)$ and all of them are co-boundary. We therefore have three distinct quantization of $\operatorname{osp}(1 \mid 2)$.
f_{1} are even $\left(\operatorname{deg}\left(h_{1}\right)=\operatorname{deg}\left(h_{2}\right)=\operatorname{deg}\left(e_{1}\right)=\operatorname{deg}\left(f_{1}\right)=0\right)$, while e_{2} and f_{2}, are odd ($\operatorname{deg}\left(e_{2}\right)=\operatorname{deg}\left(f_{2}\right)=1$), and the commutation relations
$\left[h_{i}, h_{j}\right]=0, \quad\left[h_{i}, e_{j}\right]=a_{i j} e_{j}, \quad\left[h_{i}, f_{j}\right]=-a_{i j} f_{j}, \quad\left[e_{i}, f_{j}\right]=\delta_{i j} h_{i}$,
$\left[e_{2}, e_{2}\right]=\left[f_{2}, f_{2}\right]=0, \quad\left[e_{1},\left[e_{1}, e_{2}\right]\right]=\left[f_{1},\left[f_{1}, f_{2}\right]\right]=0$.
The last two equations are called the Serre relations. The commutator [,] is understood as the \mathbb{Z}_{2}-graded one: $[a, b]=a b-(-)^{\operatorname{deg}(a) \operatorname{deg}(b)} b a$. Defining

$$
\begin{equation*}
e_{3}=e_{1} e_{2}-e_{2} e_{1}, \quad f_{3}=f_{2} f_{1}-f_{1} f_{2} \tag{2.2}
\end{equation*}
$$

we obtain
$\left[e_{1}, e_{3}\right]=0, \quad\left[f_{3}, f_{1}\right]=0$,
$\left[e_{2}, e_{3}\right]=0, \quad\left[f_{2}, f_{3}\right]=0$,
$e_{3}^{2}=f_{3}^{2}=0$,
$\left[e_{3}, f_{3}\right]=h_{1}+h_{2} \equiv h_{3}$,
$\left[f_{1}, e_{3}\right]=e_{2}$, etc.

Let us mention that there is a \mathbb{C}-algebra automorphism ϕ of $\mathcal{U}(s l(2 \mid 1))$ such that
$\phi:\left(h_{1}, h_{2}, h_{3}, e_{1}, e_{2}, e_{3}, f_{1}, f_{2}, f_{3}\right) \rightarrow\left(h_{1},-h_{3},-h_{2}, e_{1}, f_{3},-f_{2}, f_{1},-e_{3}, e_{2}\right)$.
The quasitriangular quantum Hopf super-algebra $\mathcal{U}_{q}(s l(2 \mid 1))(q$ is an arbitrary complex number), by analogy with $\mathcal{U}(\operatorname{sl}(2 \mid 1))$, is generated by six elements \hat{h}_{i}, \hat{e}_{i} and $\hat{f}_{i}, i=1,2$, under the relations

$$
\begin{align*}
& {\left[\hat{h}_{i}, \hat{h}_{j}\right]=0 \text {, }} \\
& {\left[\hat{h}_{i}, \hat{e}_{j}\right]=a_{i j} \hat{e}_{j},} \\
& {\left[\hat{h}_{i}, \hat{f}_{j}\right]=-a_{i j} \hat{f}_{j},} \\
& {\left[\hat{e}_{i}, \hat{f}_{j}\right]=\delta_{i j} \frac{q^{\hat{h}_{i}}-q^{-\hat{h}_{i}}}{q-q^{-1}}, \quad \hat{e}_{2}^{2}=\hat{f}_{2}^{2}=0,} \tag{2.5}\\
& \hat{e}_{1}^{2} \hat{e}_{2}-\left(q+q^{-1}\right) \hat{e}_{1} \hat{e}_{2} \hat{e}_{1}+\hat{e}_{2} \hat{e}_{1}^{2}=\hat{f}_{1}^{2} \hat{f}_{2}-\left(q+q^{-1}\right) \hat{f}_{1} \hat{f}_{2} \hat{f}_{1}+\hat{f}_{2} \hat{f}_{1}^{2}=0 .
\end{align*}
$$

All generators are even except for \hat{e}_{2} and \hat{f}_{2} which are odd and $\operatorname{deg}\left(\hat{h}_{1}\right)=\operatorname{deg}\left(\hat{h}_{2}\right)=$ $\operatorname{deg}\left(\hat{e}_{1}\right)=\operatorname{deg}\left(\hat{f}_{1}\right)=0$. The co-products, counits and antipodes are given by

$$
\begin{array}{lll}
\Delta\left(\hat{e}_{i}\right)=\hat{e}_{i} \otimes q^{\hat{h}_{i} / 2}+q^{-\hat{h}_{i} / 2} \otimes \hat{e}_{i}, & \epsilon\left(\hat{e}_{i}\right)=0, & S\left(\hat{e}_{i}\right)=-q^{\hat{h}_{i} / 2} \hat{e}_{i} q^{-\hat{h}_{i} / 2}, \\
\Delta\left(\hat{f}_{i}\right)=\hat{f}_{i} \otimes q^{\hat{h}_{i} / 2}+q^{-\hat{h}_{i} / 2} \otimes \hat{f}_{i}, & \epsilon\left(\hat{f}_{i}\right)=0, & S\left(\hat{f}_{i}\right)=-q^{\hat{h}_{i} / 2} \hat{f}_{i} q^{-\hat{h}_{i} / 2} \tag{2.6}\\
\Delta\left(\hat{h}_{i}\right)=\hat{h}_{i} \otimes 1+1 \otimes \hat{h}_{i}, & \epsilon\left(\hat{h}_{i}\right)=0, & S\left(\hat{h}_{i}\right)=-\hat{h}_{i} .
\end{array}
$$

The universal \mathcal{R}-matrix is given in [20,21]. Note that the definition of the Hopf super-algebra differs from that of the usual Hopf algebra by the supercommutativity of tensor product, i.e. $(a \otimes b)(c \otimes d)=(-1)^{\operatorname{deg}(b) \operatorname{deg}(c)}(a c \otimes b d)$. For later use, we note that the fundamental representation of (2.5) is spanned by
$\hat{h}_{1}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0\end{array}\right), \quad \hat{e}_{1}=\left(\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right), \quad \hat{f}_{1}=\left(\begin{array}{ccc}0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$,
$\hat{h}_{2}=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right), \quad \hat{e}_{2}=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right), \quad \hat{f}_{2}=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$.

2.1. Contraction process

Following [4], the \mathcal{R}_{h} (h is an arbitrary complex number) matrix of the super-Jordanian quantum super-algebra $\mathcal{U}_{\mathrm{h}}(s l(2 \mid 1))$, for arbitrary representations in the two tensor product sectors, can be also obtained from the \mathcal{R}_{q}-matrix associated with the Drinfeld-Jimbo quantum super-algebra $\mathcal{U}_{q}(s l(2 \mid 1))$ through a specific contraction. For simplicity and brevity, let us start
with (fundamental irrep.) \otimes (fundamental irrep.). The \mathcal{R}_{q}-matrix of $\mathcal{U}_{q}(s l(2 \mid 1))$ super-algebra in the (fund.) \otimes (fund.) representation reads
$\left.R_{\mathrm{h}}\right|_{\text {(fund. } \otimes \text { fund.) }}=\left(\begin{array}{ccccccccc}q & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & q-q^{-1} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & q-q^{-1} & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & q & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & q-q^{-1} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -q^{-2}\end{array}\right)$.
The \mathcal{R}_{h}-matrix in the (fund. \otimes fund.) representation is obtained, from (2.9), in the following manner:

$$
\begin{align*}
& \left.R_{\mathrm{h}}\right|_{\text {(fund. } \otimes \text { fund.) }} \\
& =\lim _{q \rightarrow 1}\left[\mathrm{E}_{q}^{-1}\left(\frac{\mathrm{~h} \hat{e}_{1}}{q-1}\right)_{\text {fund. }} \otimes \mathrm{E}_{q}^{-1}\left(\frac{\mathrm{~h} \hat{e}_{1}}{q-1}\right)_{\text {fund. }}\right] R_{q}\left[\mathrm{E}_{q}\left(\frac{\mathrm{~h} \hat{e}_{1}}{q-1}\right)_{\text {fund. }} \otimes \mathrm{E}_{q}\left(\frac{\mathrm{~h} \hat{e}_{1}}{q-1}\right)_{\text {fund. }}\right] \\
& =\left(\begin{array}{ccccccccc}
1 & \mathrm{~h} & 0 & -\mathrm{h} & \mathrm{~h}^{2} & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & \mathrm{~h} & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & -\mathrm{h} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1
\end{array}\right) \tag{2.9}
\end{align*}
$$

Similarly, using a Maple program ${ }^{6}$ we obtain, for (fundamental irrep.) \otimes (arbitrary irrep.), the following expression:

$$
\left.L \equiv R_{\mathrm{h}}\right|_{\text {(fund. } \otimes \mathrm{arb} .)}=\left(\begin{array}{ccc}
T & -\mathrm{h} H_{1}+\frac{\mathrm{h}}{2}\left(T-T^{-1}\right) & 0 \tag{2.10}\\
0 & T^{-1} & 0 \\
0 & 0 & (-1)^{F}
\end{array}\right)
$$

where
$H_{1}=\frac{1}{2}\left(T+T^{-1}\right) h_{1}=\sqrt{1+\mathrm{h}^{2} e_{1}^{2}} h_{1}, \quad T^{ \pm 1}= \pm \mathrm{h} e_{1}+\sqrt{1+\mathrm{h}^{2} e_{1}^{2}}$.
The above L operator allows immediate construction of the full Hopf structure of the Borel subalgebra of the $\mathcal{U}_{\mathrm{n}}(s l(2 \mid 1))$ algebra via the FRT formalism ${ }^{7}$.

2.2. Nonlinear map and Hopf structure

Following [4, 6], let us introduce the generator

$$
\begin{equation*}
F_{1}=f_{1}-\frac{\mathrm{h}^{2}}{4} e_{1}\left(h_{1}^{2}-1\right) . \tag{2.12}
\end{equation*}
$$

[^1]We then show that

$$
\begin{align*}
& T T^{-1}=T^{-1} T=1, \quad\left[H_{1}, T^{ \pm 1}\right]=T^{ \pm 2}-1 \\
& {\left[T^{ \pm 1}, F_{1}\right]= \pm \frac{\mathrm{h}}{2}\left(H_{1} T^{ \pm 1}+T^{ \pm 1} H_{1}\right)} \tag{2.13}\\
& {\left[H_{1}, F_{1}\right]=-\frac{1}{2}\left(T F_{1}+F_{1} T+T^{-1} F_{1}+F_{1} T^{-1}\right),}
\end{align*}
$$

with the well-known co-products, counits and antipodes [22]

$$
\begin{array}{ll}
\Delta\left(H_{1}\right)=H_{1} \otimes T+T^{-1} \otimes H_{1}, & \Delta\left(T^{ \pm 1}\right)=T^{ \pm 1} \otimes T^{ \pm 1} \\
\Delta\left(F_{1}\right)=F_{1} \otimes T+T^{-1} \otimes F_{1}, & S\left(H_{1}\right)=-T H_{1} T^{-1} \\
S\left(T^{ \pm 1}\right)=T^{\mp 1}, & S\left(F_{1}\right)=-T F_{1} T^{-1} \tag{2.14}\\
\epsilon\left(H_{1}\right)=\epsilon\left(F_{1}\right)=0, & \epsilon\left(T^{ \pm 1}\right)=1 .
\end{array}
$$

This implies that Ohn's structure follows from the bosonic generators $\left\{h_{1}, e_{1}, f_{1}\right\}$. The algebraic properties (2.11) and (2.12) exhibit clearly the embedding of $\mathcal{U}_{\mathrm{n}}(s l(2))$ in $\mathcal{U}_{\mathrm{n}}(s l(2 \mid 1))$.

Now to complete the $\mathcal{U}_{\mathrm{h}}(s l(2 \mid 1))$ super-algebra, we introduce the following h -deformed fermionic root generators:
$H_{2}=h_{2}-\frac{\mathrm{h}^{2}}{2} e_{1}^{2} h_{1}, \quad E_{2}=e_{2}-\frac{\mathrm{h}^{2}}{4} e_{1} e_{3}\left(2 h_{1}+1\right), \quad F_{2}=f_{2}$,
$H_{3}=h_{3}+\frac{\mathrm{h}^{2}}{2} e_{1}^{2} h_{1}, \quad E_{3}=e_{3}, \quad F_{3}=f_{3}+\frac{\mathrm{h}^{2}}{4} e_{1} f_{2}\left(2 h_{1}+1\right)$.
The generators E_{2}, E_{3}, F_{2} and F_{3} are odd, while H_{2} and H_{3} are even. The expressions (2.11), (2.12) and (2.15) define a realization of the super-Jordanian subalgebra $\mathcal{U}_{\mathrm{n}}(s l(2 \mid 1))$ with the classical generators via a nonlinear map (other invertible maps relating the super-Jordanian and the classical generators may also be considered) and permit immediate explicit construction of the finite-dimensional irreducible representations of the $\mathcal{U}_{\mathrm{h}}(\operatorname{sl}(2 \mid 1))$ super-algebra. In the following we quote only our final results:

Proposition 1. The nonstandard (super-Jordanian) enveloping super-algebra $\mathcal{U}_{\mathrm{h}}(\operatorname{sl}(2 \mid 1))$ is an associative super-algebra over \mathbb{C} generated by $\left\{H_{1}, T, T^{-1}, F_{1}, H_{2}, E_{2}, F_{2}, H_{3}, E_{3}, F_{3}\right\}$ satisfying, along with (2.15) and (2.17), the commutation relations

$$
\begin{aligned}
& {\left[H_{1}, H_{2}\right]=-\frac{1}{4}\left(T-T^{-1}\right)^{2} H_{1}, \quad\left[H_{1}, H_{3}\right]=\frac{1}{4}\left(T-T^{-1}\right)^{2} H_{1}, \quad\left[H_{2}, H_{3}\right]=0,} \\
& {\left[H_{1}, E_{2}\right]=-\frac{1}{2}\left(T+T^{-1}\right) E_{2}-\frac{\mathrm{h}}{2}\left(T-T^{-1}\right) E_{3} H_{1}-\frac{\mathrm{h}}{4}\left(T^{2}-T^{-2}\right) E_{3},} \\
& {\left[H_{1}, F_{3}\right]=-\frac{1}{2}\left(T+T^{-1}\right) F_{3}+\frac{\mathrm{h}}{2}\left(T-T^{-1}\right) F_{2} H_{1}+\frac{\mathrm{h}}{4}\left(T^{2}-T^{-2}\right) F_{2},} \\
& {\left[H_{1}, F_{2}\right]=\frac{1}{2}\left(T+T^{-1}\right) F_{2}, \quad\left[H_{1}, E_{3}\right]=\frac{1}{2}\left(T+T^{-1}\right) E_{3},} \\
& {\left[H_{2}, T^{ \pm 1}\right]=-\frac{1}{4}\left(T^{ \pm 3}-T^{\mp 1}\right), \quad\left[H_{3}, T^{ \pm 1}\right]=\frac{1}{4}\left(T^{ \pm 3}-T^{\mp 1}\right),} \\
& {\left[H_{2}, F_{1}\right]=\frac{1}{4}\left(T+T^{-1}\right)^{2} F_{1}-\frac{\mathrm{h}}{4}\left(T-T^{-1}\right) H_{1}^{2}-\frac{\mathrm{h}}{4}\left(T^{2}-T^{-2}\right) H_{1}-\frac{\mathrm{h}}{16}\left(T^{2}-T^{-2}\right)\left(T+T^{-1}\right),} \\
& {\left[H_{3}, F_{1}\right]=-\frac{1}{4}\left(T+T^{-1}\right)^{2} F_{1}+\frac{\mathrm{h}}{4}\left(T-T^{-1}\right) H_{1}^{2}+\frac{\mathrm{h}}{4}\left(T^{2}-T^{-2}\right) H_{1}+\frac{\mathrm{h}}{16}\left(T^{2}-T^{-2}\right)\left(T+T^{-1}\right),} \\
& {\left[H_{2}, E_{2}\right]=\frac{\mathrm{h}}{16}\left(T+T^{-1}\right)\left(T^{2}-T^{-2}\right) E_{3}+\frac{1}{8}\left(T-T^{-1}\right)^{2} E_{2},}
\end{aligned}
$$

$$
\begin{align*}
& {\left[H_{3}, F_{3}\right]=\frac{\mathrm{h}}{16}\left(T-T^{-1}\right)\left(T^{2}-T^{-2}\right) F_{2}-\frac{1}{8}\left(T-T^{-1}\right)^{2} F_{3},} \\
& {\left[H_{2}, F_{3}\right]=\frac{1}{8}\left(T^{2}+6+T^{-2}\right) F_{3}-\frac{\mathrm{h}}{16}\left(T^{2}-T^{-2}\right)\left(T+T^{-1}\right) F_{2},} \\
& {\left[H_{3}, E_{2}\right]=-\frac{1}{8}\left(T^{2}+6+T^{-2}\right) E_{2}-\frac{\mathrm{h}}{16}\left(T^{2}-T^{-2}\right)\left(T+T^{-1}\right) E_{3},} \\
& {\left[H_{2}, F_{2}\right]=-\frac{1}{8}\left(T-T^{-1}\right)^{2} F_{2}, \quad\left[H_{3}, E_{3}\right]=\frac{1}{8}\left(T-T^{-1}\right)^{2} E_{3},} \\
& {\left[H_{3}, F_{2}\right]=\frac{1}{8}\left(T^{2}+6+T^{-2}\right) F_{2}, \quad\left[H_{2}, E_{3}\right]=-\frac{1}{8}\left(T^{2}+6+T^{-2}\right) E_{3},} \\
& {\left[E_{2}, F_{2}\right]=H_{2}-\frac{1}{16}\left(T-T^{-1}\right)^{2}-\frac{\mathrm{h}}{4}\left(T-T^{-1}\right) E_{3} F_{2},} \\
& {\left[E_{3}, F_{3}\right]=H_{3}+\frac{1}{16}\left(T-T^{-1}\right)^{2}+\frac{\mathrm{h}}{4}\left(T-T^{-1}\right) F_{2} E_{3},} \\
& {\left[T^{ \pm 1}, F_{2}\right]=\left[T^{ \pm 1}, E_{3}\right]=0, \quad F_{2}^{2}=E_{3}^{2}=0, \quad\left[F_{2}, F_{1}\right]=F_{3}, \quad\left[F_{1}, E_{3}\right]=E_{2},} \\
& E_{2}^{2}=\frac{\mathrm{h}}{4}\left(T-T^{-1}\right) E_{3} E_{2}, \quad F_{3}^{2}=-\frac{\mathrm{h}}{4}\left(T-T^{-1}\right) F_{2} F_{3}, \quad\left[E_{2}, E_{3}\right]=\left[F_{2}, F_{3}\right]=0, \\
& {\left[T^{ \pm 1}, E_{2}\right]= \pm \frac{\mathrm{h}}{2}\left(T^{ \pm 2}+1\right) E_{3}, \quad\left[T^{ \pm 1}, F_{3}\right]=\mp \frac{\mathrm{h}}{2}\left(T^{ \pm 2}+1\right) F_{2}, \quad\left[F_{2}, E_{3}\right]=\frac{1}{2 \mathrm{~h}}\left(T-T^{-1}\right),} \\
& {\left[E_{2}, F_{1}\right]=\frac{\mathrm{h}}{4}\left(T-T^{-1}\right) E_{2}+\frac{\mathrm{h}}{2}\left(T-T^{-1}\right) E_{3} F_{1}-\frac{\mathrm{h}^{2}}{4} E_{3} H_{1}^{2}} \\
& -\frac{3 \mathrm{~h}^{2}}{8}\left(T+T^{-1}\right) E_{3} H_{1}-\frac{\mathrm{h}^{2}}{2} E_{3}-\frac{15 \mathrm{~h}^{2}}{64}\left(T-T^{-1}\right)^{2} E_{3}, \\
& {\left[F_{3}, F_{1}\right]=\frac{\mathrm{h}}{4}\left(T-T^{-1}\right) F_{3}-\frac{\mathrm{h}}{2}\left(T-T^{-1}\right) F_{2} F_{1}+\frac{\mathrm{h}^{2}}{4} F_{2} H_{1}^{2}+\frac{3 \mathrm{~h}^{2}}{8}\left(T+T^{-1}\right) F_{2} H_{1}+\frac{\mathrm{h}^{2}}{2} F_{2}} \\
& +\frac{15 \mathrm{~h}^{2}}{64}\left(T-T^{-1}\right)^{2} F_{2}, \\
& {\left[F_{3}, E_{2}\right]=F_{1}-\frac{\mathrm{h}}{4}\left(T-T^{-1}\right) F_{2} E_{2}+\frac{\mathrm{h}}{4}\left(T-T^{-1}\right) E_{3} F_{3}-\frac{\mathrm{h}}{8}\left(T-T^{-1}\right) H_{1}^{2}-\frac{\mathrm{h}}{8}\left(T^{2}-T^{-2}\right) H_{1}} \\
& -\frac{\mathrm{h}}{16} H_{1}\left(T^{2}-T^{-2}\right)-\frac{7 \mathrm{~h}}{128}\left(T-T^{-1}\right)^{3} . \tag{2.16}
\end{align*}
$$

The \mathbb{Z}_{2}-grading in $\mathcal{U}_{\mathrm{h}}(s l(2 \mid 1))$ is uniquely defined by the requirement that the only odd generators are E_{2}, F_{2}, E_{3} and F_{3}. It is obvious that as $\mathrm{h} \rightarrow 0$, we have $\left(E_{2}, F_{2}, H_{2}\right.$, $\left.E_{3}, F_{3}, H_{3}\right) \rightarrow\left(e_{2}, f_{2}, h_{2}, e_{3}, f_{3}, h_{3}\right)$.

Proposition 2. Let us note that there exists a \mathbb{C}-algebra automorphism of $\mathcal{U}_{\mathrm{n}}(\operatorname{sl}(2 \mid 1))$ such that
$\Phi\left(T^{ \pm 1}, F_{1}, H_{1}, E_{2}, F_{2}, H_{2}, E_{3}, F_{3}, H_{3}\right) \longrightarrow\left(T^{ \pm 1}, F_{1}, H_{1}, F_{3},-E_{3},-H_{3},-F_{2}, E_{2},-H_{2}\right)$.
(For $\mathrm{h}=0$, this automorphism reduces to (2.5)).

Proposition 3. The nonstandard (super-Jordanian) quantum enveloping super-algebra $\mathcal{U}_{\mathrm{h}}(s l(2 \mid 1))$ admits a Hopf structure with co-products, antipodes and counits determined
by (2.15) and
$\Delta\left(E_{2}\right)=E_{2} \otimes T^{1 / 2}+T^{-1 / 2} \otimes E_{2}+\frac{\mathrm{h}}{4} T^{-1} E_{3} \otimes\left(T^{-1 / 2} H_{1}+H_{1} T^{-1 / 2}\right)$

$$
-\frac{\mathrm{h}}{4}\left(T^{1 / 2} H_{1}+H_{1} T^{1 / 2}\right) \otimes T E_{3},
$$

$\Delta\left(F_{2}\right)=F_{2} \otimes T^{-1 / 2}+T^{1 / 2} \otimes F_{2}$,
$\Delta\left(E_{3}\right)=E_{3} \otimes T^{-1 / 2}+T^{1 / 2} \otimes E_{3}$,
$\Delta\left(F_{3}\right)=F_{3} \otimes T^{1 / 2}+T^{-1 / 2} \otimes F_{3}-\frac{\mathrm{h}}{4} T^{-1} F_{2} \otimes\left(T^{-1 / 2} H_{1}+H_{1} T^{-1 / 2}\right)$

$$
+\frac{\mathrm{h}}{4}\left(T^{1 / 2} H_{1}+H_{1} T^{1 / 2}\right) \otimes T F_{2}
$$

$\Delta\left(H_{2}\right)=H_{2} \otimes 1+1 \otimes H_{2}+\frac{1}{4} T H_{1} \otimes\left(1-T^{2}\right)+\frac{1}{4}\left(1-T^{-2}\right) \otimes T^{-1} H_{1}$,
$\Delta\left(H_{3}\right)=H_{3} \otimes 1+1 \otimes H_{3}-\frac{1}{4} T H_{1} \otimes\left(1-T^{2}\right)-\frac{1}{4}\left(1-T^{-2}\right) \otimes T^{-1} H_{1}$,
$S\left(E_{2}\right)=-E_{2}-\frac{\mathrm{h}}{2}\left(T+T^{-1}\right) E_{3}, \quad S\left(F_{3}\right)=-F_{3}+\frac{\mathrm{h}}{2}\left(T+T^{-1}\right) F_{2}$,
$S\left(F_{2}\right)=-F_{2}, \quad S\left(E_{3}\right)=-E_{3}$,
$S\left(H_{2}\right)=-H_{2}+\frac{1}{2}\left(T^{-2}-1\right), \quad S\left(H_{3}\right)=-H_{3}-\frac{1}{2}\left(T^{-2}-1\right)$,
$\epsilon\left(H_{2}\right)=\epsilon\left(H_{3}\right)=\epsilon\left(E_{2}\right)=\epsilon\left(F_{2}\right)=\epsilon\left(E_{3}\right)=\epsilon\left(F_{3}\right)=0$.

All the Hopf super-algebra axioms can be verified by direct calculations. We remark that our co-products have simpler forms compared to those given in the literature [9-18]. This is one main advantage of our procedure.

Proposition 4. The universal \mathcal{R}_{h}-matrix of $\mathcal{U}_{\mathrm{h}}(\operatorname{sl}(2 \mid 1))$ has the following form:

$$
\begin{equation*}
\mathcal{R}_{\mathrm{h}}=\exp \left(-\mathrm{h} X_{1} \otimes T H_{1}\right) \exp \left(\mathrm{h} T H_{1} \otimes X_{1}\right) \tag{2.19}
\end{equation*}
$$

where $X_{1}=\mathrm{h}^{-1} \ln T$. Element (2.19) coincides with the pure $\mathcal{U}_{\mathrm{h}}(\operatorname{sl}(2))$ universal \mathcal{R}_{h}-matrix [19].

3. $\mathcal{U}(\operatorname{sl}(3 \mid 1))$: Nonstandard quantization and Hopf structure

The major interest of our approach is that it can be generalized for obtaining superJordanian quantum super-algebras $\mathcal{U}_{\mathrm{h}}(s l(N \mid 1))$ of higher dimensions. We start here with $\mathcal{U}_{\mathrm{h}}(s l(3 \mid 1))$. In our notations $e_{i j}$ is an $(N+1) \times(N+1)$ matrix with only the (i, j) matrix element being equal to 1 , all other matrix elements are zero. Let $h_{12}=e_{11}-e_{22}$, $h_{23}=e_{22}-e_{33}, h_{34}=e_{33}+e_{44}, e_{12}, e_{23}, e_{34}, e_{21}, e_{32}$ and e_{43} be the standard Chevalley generators of $\mathcal{U}(s l(3 \mid 1))$. The generators $h_{12}, h_{23}, e_{12}, e_{23}, e_{21}, e_{32}$, and h_{34} are even, while e_{34} and e_{43} are odd. The generators corresponding to other roots, obtained by the action of the Weyl group, are denoted by $e_{13}=\left[e_{12}, e_{23}\right], e_{14}=\left[e_{13}, e_{34}\right], e_{24}=\left[e_{23}, e_{34}\right], e_{31}=\left[e_{32}, e_{21}\right]$, $e_{41}=\left[e_{43}, e_{31}\right], e_{42}=\left[e_{43}, e_{32}\right], h_{13}=e_{11}-e_{33} \equiv h_{12}+h_{23}, h_{14}=e_{11}+e_{44} \equiv h_{13}+h_{34}$ and $h_{24}=e_{22}+e_{44} \equiv h_{23}+h_{34} .{ }^{8}$ The commutator [,] is understood as the \mathbb{Z}_{2}-graded one, i.e.

$$
\begin{equation*}
\left[e_{i j}, e_{k l}\right]=\delta_{j k} e_{i l}-(-)^{\operatorname{deg}\left(e_{i j}\right) \operatorname{deg}\left(e_{k l}\right)} \delta_{l i} e_{k j} \tag{3.1}
\end{equation*}
$$

${ }^{8}$ The elements $\left\{h_{12}, h_{23}, e_{12}, e_{23}, e_{21}, e_{32}, e_{13}, e_{31}, h_{13}\right\}$ build here the subalgebra $\mathcal{U}(s l(3))$ of $\mathcal{U}(s l(3 \mid 1))$.

There exists a \mathbb{C}-algebra automorphism ϕ of $\mathcal{U}(s l(3 \mid 1))$ such that

$$
\begin{align*}
\phi\left(e_{12}, e_{21}, h_{12},\right. & \left.e_{23}, e_{32}, h_{23}, e_{34}, e_{43}, h_{34}, \ldots\right) \\
& \longrightarrow\left(e_{23}, e_{32}, h_{23}, e_{12}, e_{12}, h_{12}, e_{41}, e_{14},-h_{14}, \ldots\right) . \tag{3.2}
\end{align*}
$$

3.1. The bosonic part: $\mathcal{U}_{\mathrm{h}}(\operatorname{sl}(3))$ subalgebra

As in the $\mathcal{U}_{\mathrm{h}}(s l(2 \mid 1))$ super-algebra, the super-Jordanian deformation arises here from the bosonic generators corresponding to the higher root, i.e. e_{13}, e_{31} and h_{13}. These generators are deformed as follows ${ }^{9}$:
$T^{ \pm 1}= \pm \mathrm{h} e_{13}+\sqrt{1+\mathrm{h}^{2} e_{13}^{2}}, \quad H_{13}=\sqrt{1+\mathrm{h}^{2} e_{13}^{2}} h_{13}, \quad E_{31}=e_{31}-\frac{\mathrm{h}^{2}}{4} e_{13}\left(h_{13}^{2}-1\right)$.

First to complete the $\mathcal{U}_{\mathrm{h}}(s l(3)) \subset \mathcal{U}_{\mathrm{h}}(\operatorname{sl}(3 \mid 1))$ subalgebra (the bosonic part of $\left.\mathcal{U}_{\mathrm{h}}(s l(3 \mid 1))\right)$, let us introduce the following h -deformed generators:
$H_{12}=h_{12}+\frac{\mathrm{h}^{2}}{2} e_{13}^{2} h_{13}, \quad E_{12}=e_{12}, \quad E_{21}=e_{21}+\frac{\mathrm{h}^{2}}{4} e_{23} e_{13}\left(2 h_{13}+1\right)$,
$H_{23}=h_{23}+\frac{\mathrm{h}^{2}}{2} e_{13}^{2} h_{13}, \quad E_{23}=e_{23}, \quad E_{32}=e_{32}-\frac{\mathrm{h}^{2}}{4} e_{12} e_{13}\left(2 h_{13}+1\right)$,
where it is obvious that as $\mathrm{h} \rightarrow 0$, we have $\left(H_{12}, E_{12}, E_{21}, H_{23}, E_{23}, E_{32}, ; H_{13}\right.$, $\left.T, T^{-1}, E_{31}\right) \rightarrow\left(h_{12}, e_{12}, e_{21}, h_{23}, e_{23}, e_{32}, h_{13}, 1,1, e_{31}\right)$. Expressions (3.3) and (3.4) define a realization of the Jordanian subalgebra $\mathcal{U}_{\mathrm{h}}(s l(3))$ embedded in $\mathcal{U}_{\mathrm{h}}(s l(3 \mid 1))$ with the classical generators via a nonlinear map. Another map has been considered in [6]. Our construction leads to the following results.

Proposition 5. The generating elements $\left\{H_{12}, E_{12}, E_{21}, H_{23}, E_{23}, E_{32}, H_{13}, T, T^{-1}, E_{31}\right\}$ of the Jordanian quantum algebra $\mathcal{U}_{\mathrm{h}}(s l(3))$ obey the following commutations rules:
$T T^{-1}=T^{-1} T=1, \quad\left[H_{13}, T^{ \pm 1}\right]=T^{ \pm 2}-1, \quad\left[T^{ \pm 1}, E_{31}\right]= \pm \frac{\mathrm{h}}{2}\left(H_{13} T^{ \pm 1}+T^{ \pm 1} H_{13}\right)$,
$\left[H_{13}, E_{31}\right]=-\frac{1}{2}\left(\left(T+T^{-1}\right) E_{31}+E_{31}\left(T+T^{-1}\right)\right), \quad\left[H_{12}, H_{23}\right]=0$,
$\left[H_{12}, H_{13}\right]=-\frac{1}{4}\left(T-T^{-1}\right)^{2} H_{13}, \quad\left[H_{23}, H_{13}\right]=-\frac{1}{4}\left(T-T^{-1}\right)^{2} H_{13}$,
$\left[H_{12}, E_{12}\right]=2 E_{12}+\frac{1}{8}\left(T-T^{-1}\right)^{2} E_{12}, \quad\left[H_{12}, E_{23}\right]=-E_{23}+\frac{1}{8}\left(T-T^{-1}\right)^{2} E_{23}$,
$\left[H_{23}, E_{12}\right]=-E_{12}+\frac{1}{8}\left(T-T^{-1}\right)^{2} E_{12}, \quad\left[H_{23}, E_{23}\right]=2 E_{23}+\frac{1}{8}\left(T-T^{-1}\right)^{2} E_{23}$,
${ }^{9}$ Similar to [6], by applying the contraction process on the R_{q}-matrix in the (fund. \otimes arb.), associated with $\mathcal{U}_{q}(s l(3 \mid 1))$, we obtain

$$
\left.R_{\mathrm{h}}\right|_{(\text {fund. } \otimes \text { arb. })}=\left(\begin{array}{cccc}
T & 2 \mathrm{~h} T^{-1 / 2} e_{23} & -\frac{\mathrm{h}}{2}\left(T+T^{-1}\right)\left(h_{1}+h_{2}\right)+\frac{\mathrm{h}}{2}\left(T-T^{-1}\right) & 0 \\
0 & I & -2 \mathrm{~h} T^{1 / 2} e_{12} & 0 \\
0 & 0 & T & 0 \\
0 & 0 & 0 & (-1)^{F}
\end{array}\right)
$$

$$
\begin{align*}
& {\left[H_{12}, E_{21}\right]=-2 E_{21}-\frac{1}{8}\left(T-T^{-1}\right)^{2} E_{21}+\frac{\mathrm{h}}{16}\left(T+T^{-1}\right)\left(T^{2}-T^{-2}\right) E_{23},} \\
& {\left[H_{23}, E_{32}\right]=-2 E_{32}-\frac{1}{8}\left(T-T^{-1}\right)^{2} E_{32}-\frac{\mathrm{h}}{16}\left(T+T^{-1}\right)\left(T^{2}-T^{-2}\right) E_{12},} \\
& {\left[H_{12}, E_{32}\right]=E_{32}-\frac{1}{8}\left(T-T^{-1}\right)^{2} E_{32}-\frac{\mathrm{h}}{16}\left(T+T^{-1}\right)\left(T^{2}-T^{-2}\right) E_{12},} \\
& {\left[H_{23}, E_{21}\right]=E_{21}-\frac{1}{8}\left(T-T^{-1}\right)^{2} E_{21}+\frac{\mathrm{h}}{16}\left(T+T^{-1}\right)\left(T^{2}-T^{-2}\right) E_{23},} \\
& {\left[H_{13}, E_{12}\right]=\frac{1}{2}\left(T+T^{-1}\right) E_{12}, \quad\left[H_{13}, E_{23}\right]=\frac{1}{2}\left(T+T^{-1}\right) E_{23},} \\
& {\left[H_{13}, E_{21}\right]=-\frac{1}{2}\left(T+T^{-1}\right) E_{21}+\frac{\mathrm{h}}{2}\left(T-T^{-1}\right) E_{23} H_{13}+\frac{\mathrm{h}}{4}\left(T^{2}-T^{-2}\right) E_{23},} \\
& {\left[H_{13}, E_{32}\right]=-\frac{1}{2}\left(T+T^{-1}\right) E_{32}-\frac{\mathrm{h}}{2}\left(T-T^{-1}\right) E_{12} H_{13}-\frac{\mathrm{h}}{4}\left(T^{2}-T^{-2}\right) E_{12},} \\
& {\left[E_{21}, F_{31}\right]=\frac{\mathrm{h}}{4}\left(T-T^{-1}\right) E_{21}-\frac{\mathrm{h}}{2}\left(T-T^{-1}\right) E_{23} E_{31}+\frac{\mathrm{h}^{2}}{4} E_{23} H_{13}^{2}+\frac{3 \mathrm{~h}^{2}}{8}\left(T+T^{-1}\right) E_{23} H_{13}} \\
& +\frac{\mathrm{h}^{2}}{2} E_{23}+\frac{15 \mathrm{~h}^{2}}{64}\left(T-T^{-1}\right)^{2} E_{23}, \\
& {\left[E_{32}, F_{31}\right]=\frac{\mathrm{h}}{4}\left(T-T^{-1}\right) E_{32}+\frac{\mathrm{h}}{2}\left(T-T^{-1}\right) E_{12} E_{31}-\frac{\mathrm{h}^{2}}{4} E_{12} H_{13}^{2}-\frac{3 \mathrm{~h}^{2}}{8}\left(T+T^{-1}\right) E_{12} H_{13}} \\
& -\frac{\mathrm{h}^{2}}{2} E_{12}-\frac{15 \mathrm{~h}^{2}}{64}\left(T-T^{-1}\right)^{2} E_{12}, \\
& {\left[H_{12}, T^{ \pm 1}\right]=-\frac{1}{4}\left(T^{ \pm 3}-T^{\mp 1}\right), \quad\left[H_{23}, T^{ \pm 1}\right]=-\frac{1}{4}\left(T^{ \pm 3}-T^{\mp 1}\right),} \\
& {\left[H_{12}, E_{31}\right]=-\frac{1}{4}\left(T+T^{-1}\right)^{2} E_{31}+\frac{\mathrm{h}}{4}\left(T-T^{-1}\right) H_{13}^{2}+\frac{\mathrm{h}}{2}\left(T+T^{-1}\right) E_{23} H_{13}} \\
& +\frac{\mathrm{h}}{16}\left(T^{3}+T-T^{-1}-T^{-3}\right), \\
& {\left[H_{23}, E_{31}\right]=-\frac{1}{4}\left(T+T^{-1}\right)^{2} E_{31}+\frac{\mathrm{h}}{4}\left(T-T^{-1}\right) H_{13}^{2}-\frac{\mathrm{h}}{2}\left(T+T^{-1}\right) E_{12} H_{13}} \\
& +\frac{\mathrm{h}}{16}\left(T^{3}+T-T^{-1}-T^{-3}\right), \\
& {\left[F_{32}, E_{21}\right]=F_{31}+\frac{\mathrm{h}}{4}\left(T-T^{-1}\right)\left(E_{12} E_{21}+E_{23} E_{32}\right)-\frac{\mathrm{h}}{8}\left(T-T^{-1}\right) H_{13}^{2}-\frac{\mathrm{h}}{4}\left(T-T^{-1}\right)} \\
& -\frac{3 \mathrm{~h}}{16}\left(T^{2}-T^{-2}\right) H_{13}-\frac{9 \mathrm{~h}}{128}\left(T-T^{-1}\right)^{3}, \\
& {\left[E_{12}, E_{21}\right]=H_{12}+\frac{1}{16}\left(T-T^{-1}\right)^{2}-\frac{\mathrm{h}}{4}\left(T-T^{-1}\right) E_{23} E_{12},} \\
& {\left[E_{23}, E_{32}\right]=H_{23}+\frac{1}{16}\left(T-T^{-1}\right)^{2}+\frac{\mathrm{h}}{4}\left(T-T^{-1}\right) E_{12} E_{23}, \quad\left[T^{ \pm 1}, E_{12}\right]=\left[T^{ \pm 1}, E_{23}\right]=0,} \\
& {\left[E_{23}, E_{21}\right]=-\frac{\mathrm{h}}{4}\left(T-T^{-1}\right) E_{23}^{2}, \quad\left[E_{12}, E_{32}\right]=\frac{\mathrm{h}}{4}\left(T-T^{-1}\right) E_{12}^{2},} \\
& {\left[T^{ \pm 1}, E_{21}\right]=\mp \frac{\mathrm{h}}{2}\left(T^{ \pm 2}+1\right) E_{23}, \quad\left[T^{ \pm 1}, E_{32}\right]= \pm \frac{\mathrm{h}}{2}\left(T^{ \pm 2}+1\right) E_{12},} \\
& {\left[E_{12}, E_{23}\right]=\frac{1}{2 \mathrm{~h}}\left(T-T^{-1}\right) \text {. }} \tag{3.5}
\end{align*}
$$

The other commutators remain undeformed.

3.2. The fermionic part

To describe the fermionic part of the super-Jordanian quantum super-algebra $\mathcal{U}_{\mathrm{h}}(s l(3 \mid 1))$, we define the elements
$H_{34}=h_{34}-\frac{\mathrm{h}^{2}}{2} e_{13}^{2} h_{13}, \quad E_{34}=e_{34}-\frac{\mathrm{h}^{2}}{4} e_{13} e_{14}\left(2 h_{13}+1\right), \quad E_{43}=e_{43}$,
$H_{24}=h_{24}, \quad E_{24}=e_{24}, \quad E_{42}=e_{42}$,
$H_{14}=h_{14}+\frac{\mathrm{h}^{2}}{2} e_{13}^{2} h_{13}, \quad E_{14}=e_{14}, \quad E_{41}=e_{41}+\frac{\mathrm{h}^{2}}{4} e_{13} e_{43}\left(2 h_{13}+1\right)$.
The generators $E_{34}, E_{43}, E_{24}, E_{42}, E_{14}$ and E_{41} are odd, while H_{34}, H_{24} and H_{14} are even. Expressions (3.3), (3.4) and (3.6) constitute a nonlinear realization of the super-Jordanian quantum super-algebra $\mathcal{U}_{\mathrm{n}}(s l(3 \mid 1))$ with the classical generators. Let us remark that the \mathbb{C}-algebra automorphism (3.2) can be easily extended to our construction, i.e.
$\phi\left(E_{12}, E_{21}, H_{12}, E_{23}, E_{32}, H_{23}, E_{34}, E_{43}, H_{34}, \ldots\right)$

$$
\begin{equation*}
\longrightarrow\left(E_{23}, E_{32}, H_{23}, E_{12}, E_{12}, H_{12}, E_{41}, E_{14},-H_{14}, \ldots\right) \tag{3.7}
\end{equation*}
$$

Proposition 6. The super-Jordanian quantum super-algebra $\mathcal{U}_{\mathrm{n}}(s l(3 \mid 1))$ is then an associative super-algebra over \mathbb{C} spanned by $\left\{H_{12}, E_{12}, E_{21}, H_{23}, E_{23}, E_{32}, H_{13}, T, T^{-1}, E_{31}, H_{34}, E_{34}\right.$, $\left.E_{43}, H_{24}, E_{24}, E_{42}, H_{14}, E_{14}, E_{41}\right\}$, satisfying along with (3.5), the commutation relations (we list here only the deformed commutator)
$\left[H_{13}, H_{34}\right]=-\frac{1}{4}\left(T-T^{-1}\right)^{2} H_{13}, \quad\left[H_{13}, H_{14}\right]=\frac{1}{4}\left(T-T^{-1}\right)^{2} H_{13}$,
$\left[H_{13}, E_{14}\right]=\frac{1}{2}\left(T+T^{-1}\right) E_{14}, \quad\left[H_{13}, E_{43}\right]=\frac{1}{2}\left(T+T^{-1}\right) E_{43}$,
$\left[H_{13}, E_{41}\right]=-\frac{1}{2}\left(T+T^{-1}\right) E_{41}+\frac{\mathrm{h}}{2}\left(T-T^{-1}\right) E_{43} H_{13}+\frac{\mathrm{h}}{4}\left(T^{2}-T^{-2}\right) E_{43}$,
$\left[H_{13}, E_{34}\right]=-\frac{1}{2}\left(T+T^{-1}\right) E_{34}-\frac{\mathrm{h}}{2}\left(T-T^{-1}\right) E_{14} H_{13}-\frac{\mathrm{h}}{2}\left(T^{2}-T^{-2}\right) E_{14}$,
$\left[H_{34}, E_{14}\right]=-\left(1+\frac{1}{8}\left(T-T^{-1}\right)^{2}\right) E_{14}, \quad\left[H_{14}, E_{43}\right]=\left(1+\frac{1}{8}\left(T-T^{-1}\right)^{2}\right) E_{43}$,
$\left[H_{34}, E_{41}\right]=\left(1+\frac{1}{8}\left(T-T^{-1}\right)^{2}\right) E_{41}-\frac{\mathrm{h}}{16}\left(T^{2}-T^{-2}\right)\left(T+T^{-1}\right) E_{43}$,
$\left[H_{34}, E_{34}\right]=\frac{1}{8}\left(T-T^{-1}\right)^{2} E_{34}+\frac{\mathrm{h}}{16}\left(T^{2}-T^{-2}\right)\left(T-T^{-1}\right) E_{14}$,
$\left[H_{34}, E_{43}\right]=-\frac{1}{8}\left(T-T^{-1}\right)^{2} E_{43}$,
$\left[H_{34}, T^{ \pm 1}\right]=-\frac{1}{4}\left(T^{ \pm 3}-T^{\mp 1}\right), \quad\left[H_{14}, T^{ \pm 1}\right]=\frac{1}{4}\left(T^{ \pm 3}-T^{\mp 1}\right)$,
$\left[H_{34}, E_{31}\right]=\frac{1}{4}\left(T+T^{-1}\right)^{2} E_{31}-\frac{\mathrm{h}}{4}\left(T-T^{-1}\right) H_{13}^{2}-\frac{\mathrm{h}}{4}\left(T^{2}-T^{-2}\right) H_{13}$ $-\frac{\mathrm{h}}{16}\left(T^{2}-T^{-2}\right)\left(T+T^{-1}\right)$,
$\left[H_{14}, E_{31}\right]=-\frac{1}{4}\left(T+T^{-1}\right)^{2} E_{31}+\frac{\mathrm{h}}{4}\left(T-T^{-1}\right) H_{13}^{2}+\frac{\mathrm{h}}{4}\left(T^{2}-T^{-2}\right) H_{13}$ $+\frac{\mathrm{h}}{16}\left(T^{2}-T^{-2}\right)\left(T+T^{-1}\right)$,
$\left[H_{14}, E_{34}\right]=-\left(1+\frac{1}{8}\left(T-T^{-1}\right)^{2}\right) E_{34}-\frac{\mathrm{h}}{16}\left(T^{2}-T^{-2}\right)\left(T+T^{-1}\right) E_{43}$,

$$
\begin{align*}
{\left[T^{ \pm 1}, E_{34}\right]=} & \pm \frac{\mathrm{h}}{2}\left(T^{ \pm 2}+1\right) E_{14}, \quad\left[T^{ \pm 1}, E_{41}\right]=\mp \frac{\mathrm{h}}{2}\left(T^{ \pm 2}+1\right) E_{43}, \\
{\left[E_{43}, E_{14}\right]=} & \frac{1}{2 \mathrm{~h}}\left(T-T^{-1}\right), \\
{\left[E_{34}, E_{43}\right]=} & H_{34}-\frac{1}{16}\left(T-T^{-1}\right)^{2}-\frac{\mathrm{h}}{4}\left(T-T^{-1}\right) E_{14} E_{43}, \\
{\left[E_{14}, E_{41}\right]=} & H_{14}+\frac{1}{16}\left(T-T^{-1}\right)^{2}+\frac{\mathrm{h}}{4}\left(T-T^{-1}\right) E_{43} E_{14}, \\
{\left[E_{43}, E_{31}\right]=} & \frac{\mathrm{h}}{4}\left(T-T^{-1}\right) E_{34}+\frac{\mathrm{h}}{2}\left(T-T^{-1}\right) E_{14} E_{31}-\frac{\mathrm{h}^{2}}{4} E_{14} H_{13}^{2}-\frac{3 \mathrm{~h}^{2}}{8}\left(T+T^{-1}\right) E_{14} H_{13} \\
& -\frac{\mathrm{h}^{2}}{2} E_{14}-\frac{15 \mathrm{~h}^{2}}{64}\left(T-T^{-1}\right)^{2} E_{14}, \\
& +\frac{\mathrm{h}}{2} E_{43}+\frac{15 \mathrm{~h}^{2}}{64}\left(T-T^{-1}\right)^{2} E_{43}, \\
{\left[E_{41}, E_{31}\right]=} & \frac{\mathrm{h}}{4}\left(T-T^{-1}\right) E_{41}-\frac{\mathrm{h}}{2}\left(T-T^{-1}\right) E_{43} E_{31}+\frac{\mathrm{h}^{2}}{4} E_{43} H_{13}^{2}+\frac{3 \mathrm{~h}^{2}}{8}\left(T+T^{-1}\right) E_{43} H_{13} \\
& \\
{\left[E_{43}, E_{32}\right]=} & F_{42}+\frac{\mathrm{h}}{4}\left(T-T^{-1}\right) E_{12} E_{43}, \\
E_{34}^{2}=\frac{\mathrm{h}}{4}(T- & \left.T^{-1}\right) E_{14} E_{34}, \quad E_{41}^{2}=-\frac{\mathrm{h}}{4}\left(T-T^{-1}\right) E_{43} E_{41}, \\
{\left[T^{ \pm 1}, E_{14}\right]=} & 0, \\
{\left[E_{34}, E_{41}\right]=} & F_{31}-\frac{\mathrm{h}}{4}\left(T T^{ \pm 1}, E_{43}\right]=0, \tag{3.8}\\
& \quad-\frac{\mathrm{h}}{8}\left(T^{2}-T^{-1}\right) E_{43} E_{34}+\frac{\mathrm{h}}{4}\left(T-T^{-1}\right) H_{13}^{2}-\frac{\mathrm{h}}{16} H_{13}\left(T^{2}-T^{-2}\right)+\frac{7 \mathrm{~h}}{128}\left(T-T_{14} F_{41}-\frac{\mathrm{h}}{8}\left(T-T^{-1}\right) H_{13}^{2} .\right.
\end{align*}
$$

The coalgebraic structure will be presented, for the general case, in the following section.

4. $\mathcal{U}(\operatorname{sl}(N \mid 1)):$ Generalization

From the above studies, it is easy to see that:
Proposition 7. The super-algebra $\mathcal{U}_{\mathrm{h}}(\operatorname{sl}(N \mid 1))$ can be realized via the nonlinear map:
$T^{ \pm 1}= \pm \mathrm{h} e_{1 N}+\sqrt{1+\mathrm{h}^{2} e_{1 N}^{2}}, \quad H_{1 N}=\sqrt{1+\mathrm{h}^{2} e_{1 N}^{2}} h_{1 N}, \quad E_{N 1}=e_{N 1}-\frac{\mathrm{h}^{2}}{4} e_{1 N}\left(h_{1 N}^{2}-1\right)$,
$H_{i j}=h_{i j}+\frac{\mathrm{h}^{2}}{2}\left(\delta_{i 1}+\delta_{j N}\right) e_{1 N}^{2} h_{1 N}, \quad i<j \in\{1,2, \ldots, N\} \quad$ and $\quad(i, j) \neq(1, N)$,
$E_{i j}=e_{i j}, \quad i<j \in\{1,2, \ldots, N\} \quad$ and $\quad(i, j) \neq(1, N)$,
$E_{j i}=e_{j i}+\frac{\mathrm{h}^{2}}{4}\left(\delta_{i 1} e_{j N}-\delta_{N j} e_{1 i}\right)\left(2 h_{1 N}+1\right), \quad i<j \in\{1,2, \ldots, N\}$ and $(i, j) \neq(1, N)$,
$H_{i, N+1}=h_{i, N+1}+\frac{\mathrm{h}^{2}}{2}\left(\delta_{i 1}-\delta_{i N}\right) e_{1 N}^{2} h_{1 N}, \quad i \in\{1,2, \ldots, N\}$,
$E_{i, N+1}=e_{i, N+1}-\frac{\mathrm{h}^{2}}{4} \delta_{i N} e_{1, N+1} e_{1 N}\left(2 h_{1 N}+1\right), \quad i \in\{1,2, \ldots, N\}$,
$E_{N+1, i}=e_{N+1, i}+\frac{\mathrm{h}^{2}}{4} \delta_{i N} e_{N+1, N} e_{1 N}\left(2 h_{1 N}+1\right), \quad i \in\{1,2, \ldots, N\}$,
with the co-products

$$
\begin{align*}
& \Delta\left(H_{1 N}\right)=H_{1 N} \otimes T+T^{-1} \otimes H_{1 N}, \quad \Delta\left(T^{ \pm 1}\right)=T^{ \pm 1} \otimes T^{ \pm 1}, \\
& \Delta\left(E_{N 1}\right)=E_{N 1} \otimes T+T^{-1} \otimes E_{N 1}, \\
& \Delta\left(H_{i j}\right)=H_{i j} \otimes 1+1 \otimes H_{i j}-\frac{1}{4}\left(\delta_{i 1}+\delta_{j N}\right)\left(T H_{1 N} \otimes\left(1-T^{2}\right)+\left(1-T^{-2}\right) \otimes T^{-1} H_{1 N}\right), \\
& i<j \in\{1,2, \ldots, N\} \quad \text { and } \quad(i, j) \neq(1, N), \\
& \Delta\left(E_{i j}\right)=E_{i j} \otimes T^{-\left(\delta_{i 1}+\delta_{j N}\right) / 2}+T^{\left(\delta_{i 1}+\delta_{j N}\right) / 2} \otimes E_{i j}, \\
& i<j \in\{1,2, \ldots, N\} \quad \text { and } \quad(i, j) \neq(1, N), \\
& \Delta\left(E_{j i}\right)=E_{j i} \otimes T^{\left(\delta_{i 1}+\delta_{j N}\right) / 2}+T^{-\left(\delta_{i 1}+\delta_{j N}\right) / 2} \otimes E_{j i}+\frac{\mathrm{h}}{4} T^{-1}\left(-\delta_{i 1} E_{j N}+\delta_{j N} E_{1 i}\right) \otimes\left(T^{-1 / 2} H_{1 N}\right. \\
& \left.+H_{1 N} T^{-1 / 2}\right)-\frac{\mathrm{h}}{4}\left(T^{1 / 2} H_{1 N}+H_{1 N} T^{1 / 2}\right) \otimes T\left(-\delta_{i 1} E_{j N}+\delta_{j N} E_{1 i}\right) \\
& i<j \in\{1,2, \ldots, N\} \quad \text { and } \quad(i, j) \neq(1, N) \text {, } \\
& \Delta\left(H_{i, N+1}\right)=H_{i, N+1} \otimes 1+1 \otimes H_{i, N+1}-\frac{1}{4}\left(\delta_{i 1}-\delta_{i N}\right)\left(T H_{1 N} \otimes\left(1-T^{2}\right)\right. \\
& \left.+\left(1-T^{-2}\right) \otimes T^{-1} H_{1 N}\right), \quad i \in\{1,2, \ldots, N\}, \\
& \Delta\left(E_{i, N+1}\right)=E_{i, N+1} \otimes T^{\left(-\delta_{i 1}+\delta_{i N}\right) / 2}+T^{\left(\delta_{i 1}-\delta_{i N}\right) / 2} \otimes E_{j i}+\frac{\mathrm{h}}{4} T^{-1} \delta_{i N} E_{1 N} \otimes\left(T^{-1 / 2} H_{1 N}\right. \\
& \left.+H_{1 N} T^{-1 / 2}\right)-\frac{\mathrm{h}}{4}\left(T^{1 / 2} H_{1 N}+H_{1 N} T^{1 / 2}\right) \otimes \delta_{i N} T E_{1 N} \quad i \in\{1,2, \ldots, N\}, \\
& \Delta\left(E_{N+1, i}\right)=E_{N+1, i} \otimes T^{\left(\delta_{i 1}-\delta_{i N}\right) / 2}+T^{\left(-\delta_{i 1}+\delta_{i N}\right) / 2} \otimes E_{N+1, i}-\frac{\mathrm{h}}{4} T^{-1} \delta_{i 1} E_{N+1, N} \otimes\left(T^{-1 / 2} H_{1 N}\right. \\
& \left.+H_{1 N} T^{-1 / 2}\right)+\frac{\mathrm{h}}{4}\left(T^{1 / 2} H_{1 N}+H_{1 N} T^{1 / 2}\right) \otimes \delta_{i 1} T E_{N+1, N} \quad i \in\{1,2, \ldots, N\} . \tag{4.2}
\end{align*}
$$

The commutator rules of $\mathcal{U}_{\mathrm{h}}(s l(N \mid 1))$ can be evaluated by direct calculations.
Parallelling the earlier cases, the universal \mathcal{R}_{h}-matrix of $\mathcal{U}_{\mathrm{h}}(s l(N \mid 1))$ is given by

$$
\begin{equation*}
\mathcal{R}_{\mathrm{h}}=\exp \left(-\mathrm{h} E_{1 N} \otimes T H_{1 N}\right) \exp \left(\mathrm{h} T H_{1 N} \otimes E_{1 N}\right) \tag{4.3}
\end{equation*}
$$

where $E_{1 N}=\mathrm{h}^{-1} \ln T$. This element can be connected to the results obtained by the contraction process by a suitable twist operator that can be derived as a series expansion in h .

5. Conclusion

In general, a class of nonlinear maps exists relating the Jordanian quantum (super)algebras and their classical analogues. Here we have used a particular map realizing Jordanian $\mathcal{U}_{\mathrm{h}}(\operatorname{sl}(N \mid 1))$ super-algebra for an arbitrary N. This map arises naturally form our contraction process defined in (1.1). Let us recall that the more important advantages of our procedure are:

- The algebraic commutation relations are deformed.
- The co-algebraic structure is simpler.
- The map obtained, by our contraction process, permits immediate explicit construction of the finite-dimensional irreps.
- Ohn's $\mathcal{U}_{\mathrm{h}}(s l(2))$ algebra is embedded as a Hopf subalgebra in our construction. Therefore, the Jordanian $\mathcal{U}_{\mathrm{h}}(s l(N \mid 1))$ super-algebra arising from our method corresponds to the classical r-matrix $r=h_{1 N} \otimes e_{1 N}-e_{1 N} \otimes h_{1 N}$.

Acknowledgments

One of us (BA) wants to thank Jean-Loup Roussel for precious help. This work is supported by a grant of 'La Fondation Charles de Gaulle'. The work of RC is partially supported by a grant of DAE (BRNS), Government of India.

References

[1] Borowiec A, Lukierski J and Tolstoy V N 2003 Mod. Phys. Lett. A 18 1157-70
[2] Ballesteros A and Herranz F J 1999 J. Phys. A: Math. Gen. 328851
[3] Aizawa N and Chakrabarti R 2005 J. Math. Phys. 46103510
[4] Abdesselam B, Chakrabarti A and Chakrabarti R 1998 Mod. Phys. Lett. A 10779
[5] Abdesselam B, Chakrabarti A, Chakrabarti R and Segar J 1999 Mod. Phys. Lett. A 12 765-77
[6] Abdesselam B, Chakrabarti A and Chakrabarti R 2002 J. Phys. A: Math. Gen. 35 3231-44
[7] Abdesselam B, Chakrabarti R, Hazzab A and Yanallah A 2004 J. Phys. A: Math. Gen. 37 7127-33
[8] Drinfeld V G 1990 Leningr. Math. J. 11419
[9] Kulish P P, Lyakhovsky V D and Mudrov A I 1999 J. Math. Phys. 404569
[10] Lyakhovsky V D and Del Olmo M A 1999 J. Phys. A: Math. Gen. 32 4541-52
[11] Lyakhovsky V D and Del Olmo M A 1999 J. Phys. A: Math. Gen. 32 5343-54
[12] Lyakhovsky V D, Mirolubov A M and Del Olmo M A 2001 J. Phys. A: Math. Gen. 34 1467-75
[13] Ananikian D N, Kulish P P and Lyakhovsky V D 2000 Proc. 23rd Int. Colloquium on Group-Theoretical Methods in Physics (Dubna, 2000)
[14] Kulish P P, Lyakhovsky V D and Del Olmo M A 1999 J. Phys. A: Math. Gen. 32 8671-84
[15] Kulish P P and Lyakhovsky V D 2000 J. Phys. A: Math. Gen. 33 L279-85
[16] Aizawa N, Chakrabarti R and Segar J 2003 Mod. Phys. Lett. A 18885
[17] Borowiec A, Lukierski J and Tolstoy V N 2005 Eur. Phys. J. C 44 139-45
[18] Tolstoy V N 2004 Chains of extended Jordanian twists for Lie superalgebras Preprint math.QA/0402433
[19] Ballesteros A and Herranz F J 1996 J. Phys. A: Math. Gen. 29 L311
[20] Khoroshkin S M and Tolstoy V N 1991 Commun. Math. Phys. 141599617
[21] Yamane H 1994 Publ. Res. Inst. Math. Sci. 301587
[22] Ohn Ch 1992 Lett. Math. Phys. 25 85-8

[^0]: * In memory of our friend Professor Daniel Arnaudon.

[^1]: ${ }^{6}$ Our program was performed for (fund.) \otimes (fund.), (fund.) \otimes (vect.) etc.
 7 The algebraic and co-algebraic properties of the Borel subalgebra are respectively given by $\left.R_{\mathrm{h}}\right|_{\text {(fund. } \otimes \text { fund.) }} L_{1} L_{2}=$ $\left.L_{2} L_{1} R_{\mathrm{h}}\right|_{\text {(fund. } \otimes \text { fund.) }}, \Delta(L)=L \dot{\otimes} L, \varepsilon(L)=1$ and $S(L)=L^{-1}$.

